相干光 FBMC/OQAM 系统的整数频偏估计与 补偿方法

崇涵丹1,王道斌1*,元丽华1,李晓晓1,曹明华2,王惠琴2

1兰州理工大学理学院,甘肃兰州 730050;

²兰州理工大学计算机与通信学院,甘肃 兰州 730050

摘要 针对激光器频偏较大的场景,研究了相干光滤波器组多载波通信(CO-FBMC/OQAM)系统的一种整数频偏估计与补偿方法。对以前的分数频偏研究工作进行了扩展,设计了一种混合型的训练序列结构。利用这种训练序列,不仅能完成分数频偏的估计,也能够实现对整数频偏的准确估计。利用数值仿真研究了该方法在 CO-FBMC/ OQAM系统中的有效性,结果表明该算法的准确频偏估计范围可以达到 12 倍子载波频率间隔,经过频偏补偿后的系统误码率可以低于前向纠错(FEC)极限。所提方法能够为 CO-FBMC/OQAM 系统的研究和应用提供有益的参考。

关键词 光通信; 滤波器组多载波调制; 正交频分复用; 频偏估计; 相干光通信系统
 中图分类号 TN913.7 文献标识码 A
 doi: 10.3788/AOS201939.1206008

Estimation and Compensation of Integer Frequency Offset in Coherent Optical Offset Quadrature Amplitude Modulation Based Filter Bank Multicarrier Systems

Chong Handan¹, Wang Daobin^{1*}, Yuan Lihua¹, Li Xiaoxiao¹, Cao Minghua², Wang Huiqin²

¹School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; ²School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

Abstract Aiming at scenes with large laser frequency offset, we study an integer frequency offset estimation and compensation method for a coherent optical offset quadrature amplitude modulation based filter bank multicarrier (CO-FBMC/OQAM) system. We expand previous researches and investigate the fractional frequency offset (FFO) by designing a hybrid training sequence structure. Based on this training sequence, we can precisely estimate the FFO and effectively implement the integer frequency offset (IFO) estimation. Further, numerical simulations are used to examine the effectiveness of the proposed method with respect to the CO-FBMC/OQAM system. The results denote that the maximum IFO can be accurately estimated to be 12 times that of the subcarrier frequency interval and that the bit error rate after frequency offset compensation is lower than the forward error correction limit. The proposed method can provide a useful reference for the research and development of the CO-FBMC/OQAM system.

Key words optical communications; filter bank multicarrier modulation; orthogonal frequency division multiplexing; frequency offset estimation; coherent optical communication system **OCIS codes** 060.1660; 060.2330; 060.4510

1 引 言

近年来,随着云计算、高清视频、人工智能和万

物互联等网络业务的爆炸式增长,人们迫切需要更 多的带宽资源和更好的网络服务质量。为了应对这 个挑战,工业界和学术界的研究人员开始越来越多

收稿日期: 2019-04-16; 修回日期: 2019-07-08; 录用日期: 2019-09-06

基金项目:国家自然科学基金(61367007,61875080,61861026)、甘肃省自然科学基金(17JR5RA123)

^{*} E-mail: photonics_wang@yahoo.com

地关注和使用多载波通信技术。正交频分复用[1-4] (OFDM)系统是一种典型的多载波通信系统,它的 子载波在频域紧密排列并相互正交,可以独立地传 输加载的信息,故系统具有很高的频谱效率,目前已 在光纤通信系统[5-6]中获得了广泛应用。但是,由于 需要额外添加循环前缀来抵抗码间干扰^[7](ISI)和 载波间干扰^[8-10](ICI),频谱效率降低;与此同时, OFDM 系统具有较大的带外频谱泄漏,该问题进一 步制约了 OFDM 系统的发展。人们提出了多种替 代方案来弥补 OFDM 技术的不足,其中一种方案是 采用交错正交幅度调制的滤波器组多载波(FBMC/ OQAM)系统^[11-12]。与 OFDM 系统相比,FBMC/ OQAM 系统具有以下突出优势:带外频谱泄漏很 少;不需要使用循环前缀,故频谱效率高;具有良好 的时频聚焦特性。许多学术团体和工业界人士一致 认为在未来的光通信系统中该技术将是 OFDM 很 有竞争力的替代方案之一[13-15]。

然而,作为多载波通信技术,FBMC/OQAM 系 统对频偏仍然很敏感,频偏会造成信号幅度衰减,诱 发 ICI 和 ISI,最终导致传输质量的严重劣化。对于 相干光通信系统,频偏主要来源于发射激光器和本 振激光器之间的频率漂移,激光器的相位噪声对传 输质量亦有重要影响。因此,设计高效的载波频偏 估计和补偿算法对 CO-FBMC/OQAM 系统至关重 要。FBMC/OQAM 系统的频偏估计方法可以分为 两大类:盲估计算法[16-18]和数据辅助的估计算 法^[19-21]。根据最大似然估计原理,Fusco 等^[16]提出 了一种 FBMC/OQAM 系统的频偏估计方法,该方 法具有较高的计算复杂度。Fusco 等^[17] 随后对这种 方法进行了改进,提出了基于最小二乘原理的载波 频偏同步算法。利用时域信号的近似共轭对称性, Mattera 等^[18]提出了载波频偏和时间同步的盲估计 算法。但是,该方法只适用于突发传输的场景。盲 估计算法具有较好的频偏矫正能力,但是计算复杂 度较高、需要的数据抽取时间较长,在实际网络环境 下并不适用。Mattera 等^[19]在 2012 年详细分析了 一种特殊的训练序列结构,实验验证其时域信号具 有共轭对称性,利用这个特点设计出了数据辅助的 FBMC/OQAM 系统时频同步算法。最近, Cho 等[20]利用相互独立的实值导频和零值导频设计了 具有周期共轭对称性的训练序列,借助该训练序列 结构提出了 FBMC/OQAM 系统的时频联合同步算 法。针对 CO-FBMC/OQAM 系统,华中科技大学 的研究人员提出了基于赝导频的频率和相位噪声联 合估计方法,将接收信号频谱中赝导频的位置与理 想位置进行对比,实现频偏估计与补偿^[21]。

在出现较大频偏的场景下,多载波通信系统的 归一化频偏可以拆分为整数频偏(IFO)和分数频偏 (FFO),IFO 的准确估计对于构建大频偏补偿算法 尤为关键。OFDM 系统的 IFO 估计算法已经进行 过详细讨论^[22-23]。然而,与 OFDM 系统不同, FBMC/OQAM 系统不满足复数域正交,只满足实 数域正交性条件,故有固有虚部干扰产生;而且, FBMC/OQAM 系统将多个频域符号在时域进行叠 加。由于这两方面因素, FBMC/OQAM 系统的 IFO 准确估计是一个较难的任务^[21]。在已发表的 相关文献中,大多数讨论的是分数频偏的估计与补 偿[16-20]。文献[21]中提出了一种整数频偏估计方 法,该方法首先需要设计赝导频及其周围数据以消 除固有虚部干扰的影响,通过比较接收信号频谱中 赝导频的实际位置与理想位置找出整数频偏。在作 者以前的研究工作中提出了 CO-FBMC/OQAM 系 统的一种频偏估计方法[24],但是,这种方法也只能 估计分数频偏。本文在发射端插入一种混合型的训 练序列,它同时包含三种训练符号(FBMC 训练符 号、OFDM 训练符号和零值符号),在接收端将该训 练序列抽取出来后分别进行 FFO 和 IFO 的估计。 完成频偏补偿后,使用插值法得出不同子载波的信 道响应,将均衡之后的数据进行 QAM 解调恢复出原 始信息。与文献「21]不同,本文提出的方法利用训练 序列估计整数频偏,不需要专门设计赝导频及其周围 数据。最后,利用数值仿真验证了该方法的有效性, 结果表明该算法可以有效估算 IFO,并且有效补偿载 波频偏对 CO-FBMC/OQAM 系统的影响。

2 整数频偏估计与补偿算法原理

2.1 CO-FBMC/OQAM 系统模型

一个 CO-FBMC/OQAM 系统由三部分组成: 综合滤波器组、光纤信道和分析滤波器组。发射端 的客户数据首先通过 Offset-QAM 预处理模块和综 合滤波器组产生 FBMC 基带信号,综合滤波器组由 快速傅里叶逆变换(IFFT)和多相滤波器组(PPN) 构成。经过光纤信道传输后,接收端通过分析滤波 器组和 Offset-QAM 后处理模块恢复出原始信号。 假设 CO-FBMC/OQAM 系统的子载波个数为 M, 每个符号的持续时间为 T,原型滤波器的时域波形 为 g(t)。发射过程中,多个子载波信号并行传输, 每个 QAM 复数信号的实部和虚部在时域上相差 T/2个符号时间交错发送,CO-FBMC/OQAM系 统的基带信号可以写为

$$s(t) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{m,n} g_{m,n}(t) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{m,n} g(t - nT/2) \exp[j(m+n)\pi/2] \exp[j2\pi m f_0 t], \qquad (1)$$

式中: $a_{m,n}$ 为第n个 FBMC 符号的第m个子载波上 承载的数据信息; f_0 为相邻子载波的频率间隔,并 且满足 $f_0 = 1/T$;g(t - nT/2)是原型滤波器经过 时域移位之后得到的调制滤波器。

本振激光器和发射激光器之间的频率偏差记作 Δf ,信道脉冲响应记为h(t),它们均会影响系统的 传输质量。在接收端,CO-FBMC/OQAM 系统的 时域信号可以写为

$$r(t) = \exp(j2\pi\Delta ft) \int_{0}^{\Delta} h(\tau)s(t-\tau)d\tau + w(t) =$$
$$\exp\left(j2\pi\frac{\varepsilon}{T}t\right) \int_{0}^{\Delta} h(\tau)s(t-\tau)d\tau + w(t), \quad (2)$$

式中: ϵ 为归一化频偏,定义为激光器频偏与子载波 频率间隔的比值, $\epsilon = \Delta f / f_0$;w(t)为加性复数噪 声; Δ 为最大信道时延扩展。在接收端,经过分析滤 波器组和快速傅里叶变换(FFT)模块后,第n个 FBMC 符号中第m个子载波的解调信号可以写为

$$\widetilde{a}_{m,n} = \int_{-\infty}^{+\infty} \exp\left(j2\pi \frac{\varepsilon}{T}t\right) \int_{0}^{\Delta} h(\tau)s(t-\tau) d\tau g_{m,n}^{*}(t) dt + w_{m,n}(t), \qquad (3)$$

式中:"*"符号代表共轭操作; $g_{m,n}(t) = g(t - nT/2)\exp[j(m+n)\pi/2]\exp(j2\pi m f_0t)$ 代表时频移 位滤波器的时域波形函数。将(1)式代入(3)式后 可得

$$\tilde{a}_{m,n} = \int_{-\infty}^{+\infty} \exp\left(j2\pi \frac{\varepsilon}{T}t\right) \left[\int_{0}^{\Delta} h(\tau) \sum_{m'=0}^{M-1} \sum_{n'=0}^{N-1} a_{m',n'} g_{m',n'}(t-\tau) d\tau\right] g_{m,n}^{*}(t) dt + w_{m,n}(t) = \\ \sum_{m'=0}^{M-1} \sum_{n'=0}^{N-1} a_{m',n'} \exp[j(m'+n'-m-n)\pi/2] \exp\left[\frac{j\pi(m'+m-\varepsilon)(n'-n)}{2}\right] \times \\ \int_{0}^{\Delta} h(\tau) \exp[-j\pi f_{0}(m'+m-\varepsilon)\tau] A_{g}\left[\frac{(n-n')T}{2} - \tau, f_{0}(\varepsilon+m'-m)\right] d\tau + w_{m,n}(t), \quad (4)$$

式中: $w_{m,n}(t)$ 为分析滤波器组后的噪声项; $A_{g}(\tau, \nu)$ 为原型滤波器的自模糊函数,具体表达式为

$$A_{g}(\tau,\nu) = \int_{-\infty}^{+\infty} g\left(t + \frac{\tau}{2}\right) g^{*}\left(t - \frac{\tau}{2}\right) \exp(j2\pi\nu t) dt,$$
(5)

式中:) 为频率变量。

2.2 整数频偏估计与补偿算法

CO-FBMC/OQAM 系统的归一化频偏可以拆分 为 FFO 和 IFO,即 $\varepsilon = \varepsilon_0 + \varepsilon_1$,其中 ε_0 代表 IFO, ε_1 代 表 FFO。本文提出的宽带频偏估计算法如图 1(a)所 示,训练序列结构如图 1(b)所示。图 1(b)中,星形代表 插入的零值导频,三角形代表用来进行分数频偏估计 的实值导频,圆形代表时域插入的 OFDM 训练符号,而 正方形代表有效载荷。为了生成训练序列,首先在频 域插入 FBMC 训练符号和保护符号,并且预留出 OFDM 训练符号的位置,经过 IFFT 和 PPN 之后,在预 留位置处时域插入 OFDM 训练符号。为了防止训练 扰,相邻实值导频之间用零值导频进行填充,并且在相 邻训练符号之间也插入几列零值导频来防止符号间的 干扰。

两列 FBMC 训练符号具有完全相同的频域结构 $p_{m,n} = p_{m,n+\Delta n}$,其功能是进行 FFO 估计,估计值 用顶部加波浪线的符号表示。在一帧数据内,假设 两列 FBMC 训练符号的时间索引号为 n 和 $n+\Delta n$, 依据(4)式,时频格点(m,n)和($m,n+\Delta n$)处的实 值导频可以写为

$$\begin{cases} \tilde{p}_{m,n} = p_{m,n} \exp(j\pi n\varepsilon_1) H(m,\varepsilon_1) + w_{m,n} \\ \tilde{p}_{m,n+\Delta n} = p_{m,n} \exp[j\pi(n+\Delta n)\varepsilon_1] H(m,\varepsilon_1) + w_{m,n+\Delta n} \end{cases}$$
(6)

式中: $H(m, \epsilon_1) = \int_{0}^{1} h(\tau) \exp[-j\pi f_0(2m - \epsilon_1)\tau] \times A_g(-\tau, f_0\epsilon_1) d\tau_0$ (6) 式表明,两列 FBMC 训练符 号的不同在于分数频偏引起的相位差别。

定义两列 FBMC 训练符号的互相关函数为 R_m,其数学表达式表示为

$$R_{m} = \left[\tilde{p}_{m,n}^{*}\tilde{p}_{m,n+\Delta n}\right] = p_{m,n}^{*}\exp(-j\pi n\epsilon_{1})H^{*}(m,\epsilon_{1})p_{m,n}\exp\left[j\pi(n+\Delta n)\epsilon_{1}\right]H(m,\epsilon_{1}) + W(w_{m,n},w_{m,n+\Delta n}) = |p_{m,n}H(m,\epsilon_{1})|^{2}\exp(j\pi\Delta n\epsilon_{1}) + W(w_{m,n},w_{m,n+\Delta n}),$$

式中: $W(w_{m,n}, w_{m,n+\Delta n})$ 为噪声之间的拍频项。为 了抑制噪声的影响,取不同实值导频的平均值 \bar{R}_{m} , FFO 的最终估计值为

$$\tilde{\epsilon}_1 = \frac{2}{M\pi\Delta n} \sum_m \text{Angle}(\bar{R}_m),$$
 (8)

式中:Angle(•)为相位角函数。

获得 FFO 的估计值后,在接收端抽取 OFDM 训练符号的时域采样值,然后乘以 $\exp\left(\frac{-2j\pi i\epsilon_1}{M}\right)$ 来 进行分数频偏补偿。经过 FFO 补偿之后,OFDM 训练符号的时域采样点记作 r'(t),其表达式可写为

$$r'(t) = r(t) \exp\left[j2\pi(\varepsilon - \varepsilon_1)\frac{i}{M}\right] + w(t) =$$
$$r(t) \exp\left(j2\pi\varepsilon_0\frac{i}{M}\right) + w(t), \qquad (9)$$

式中:r(t)为接收端未经 FFO 补偿的时域波形; w(t)为噪声干扰项; ϵ_0 表示整数频偏;i为时间采样 点序号。当接收到的信号经过 FFO 补偿之后,仅剩 整数频偏 ϵ_0 。

IFO 不会在 OFDM 训练符号中产生 ICI,但是 会导致频域数据发生循环移位 ϵ_0 。因此,为了估算 IFO,需要将 FFO 补偿后的 OFDM 训练符号与原 始 OFDM 训练符号进行相关运算。为了达到此目 的,接收端抽取 r'(t),对其进行傅里叶变换后获得 频域数据,其数学表达式为

$$Y(m') = FFT[r'(t)], \qquad (10)$$

式中:FFT(•)表示傅里叶变换;m⁷为循环移位后 子载波数据的频域位置;m 为未发生移位时子载波 数据的理想位置。采用一种简单方法估算 IFO,定 义交叉关联函数为

$$H(d) = \Big| \sum_{m=0}^{N-1} S^*(m) Y(m+d) \Big|, \quad (11)$$

式中:符号 |• |代表求复数的幅值;S(m)为未发生 移位时 OFDM 训练符号的子载波数据;d 为候选整 数频偏值。如果 d 恰好等于整数频偏 ε_0 ,则 H(d)取最大值,因此 IFO 的估计值可以从 H(d)的峰值 处获得:

$$\widetilde{\varepsilon}_0 = \arg \max(H(d))_{\circ} \tag{12}$$

获得 FFO 和 IFO 的估计值后,即可计算整个 归一化频偏的估计值 $\varepsilon = \varepsilon_0 + \varepsilon_1$,然后有效载荷的 时域采样点乘以 $\exp\left(\frac{-2j\pi i \varepsilon}{M}\right)$,完成频偏补偿。最 后,采用文献[24]中所述的方法估计每个子载波的 信道响应并进行均衡。

- 图 1 CO-FBMC/OQAM 系统的大频偏估计算法和帧结 构。(a) CO-FBMC/OQAM 系统的大频偏估计算 法;(b) CO-FBMC/OQAM 系统的帧结构
- Fig. 1 Wide-range frequency offset estimation method and frame structure for CO-FBMC/OQAM system.
 (a) Wide-range frequency offset estimation method for CO-FBMC/OQAM system;
 (b) frame structure of CO-FBMC/OQAM system

3 数值仿真和结果分析

3.1 系统参数配置

为了验证本文所提出的频偏估计算法的有效 性,搭建了如图 2(a)所示的 CO-FBMC/OQAM 光 纤通信系统仿真平台,图中 ADC 表示模数转换, DAC 表示数模转换,LPF 表示低通滤波器。发射 端读入随机比特序列并对读入序列进行 16QAM 星座映射,然后进行 Offset-QAM 预处理和串并变 换,每个 FBMC 帧的前 13 个符号是训练序列,包 含 FBMC 训练符号、OFDM 训练符号和保护间隔。 FFT 点数设置为 256,有效子载波个数为 216,为 了避免传输过程中滤波器造成的损伤,其余 40 个 边缘子载波均设置为零。PPN 结构中使用的原型 滤波器为 PHYDYAS 滤波器^[25],并且设定重叠因 子K=4。发射端产生 FBMC/OQAM 基带信号 后,分为 I 路和 Q 路,经过 DAC 变为模拟电信号, 采样速率为 10 GSa/s。可调激光器的中心频率是 193.4 THz。CO-FBMC/OQAM 系统的子载波频 率间隔为 39 MHz (10 G/256≈39 MHz),基带信号的电频谱图如图 2(b)所示,光谱图如图 2(c) 所示。

Fig. 2 Compositional structure of CO-FBMC/OQAM system. (a) Simulation platform of CO-FBMC/OQAM system;(b) electrical spectra of baseband signals; (c) optical spectra of baseband signals

光纤传输链路由 8 个光纤跨段组成,每个跨段 包涵 100 km 标准单模光纤和掺铒光纤放大器。光 纤链路末端可以添加自发放大辐射(ASE)噪声,并 对系统的光信噪比进行调控。在接收端,本振激光 器和发射端激光器的中心频率差定义为频率偏差 Δf。光电探测器输出的电信号经过 LPF 和 ADC 之后,首先进行串并变换,按照所提方法进行 FFO 和 IFO 的估计与补偿,有效载荷经过 PPN 和 FFT 后,利用训练序列进行信道估计与均衡。最后,将均 衡后的信号送到 Offset-QAM 后处理模块中恢复出 原始信息。

3.2 仿真结果分析

为了评价所设计系统的传输质量,利用误码率 (BER)和误差矢量幅度(EVM)对星座点进行统计。

平均误差矢量信号功率和平均参考信号功率的比值 取均方根后即可得到 EVM。与 BER 相似, EVM 越大说明信号受干扰越大,恢复出的信号误差越大, 反之则说明干扰小,信号误差小。EVM 的定义式 为

$$I_{\text{EVM}} = \sqrt{\left(\frac{1}{N}\sum_{i=1}^{N} |\tilde{S}_{i} - S_{i}|^{2}\right) / \left(\frac{1}{N}\sum_{i=1}^{N} |S_{i}|^{2}\right)},$$
(13)

式中:N 为接收的 QAM 符号总数; \tilde{S}_i 为每个符号 解调后的估计值; S_i 为每个符号的理想值。

研究了背靠背场景下不同训练序列结构对所提 算法性能的影响。表1给出了4种不同的训练序列 结构:"0"代表作为保护间隔的零值符号;"※"代表 用于 FFO 估计的 FBMC 训练符号;"Δ"代表用于 IFO 估计的 OFDM 训练符号,在时域中将此符号插 入训练序列。以 TS1 为例,将每帧的前 13 个符号 设定为训练序列,在频域的第 3,5,7 个位置插入 FBMC 训练符号,其余 9 个符号均插入零值导频。 经过 IFFT 和 PPN 之后,在第 11 个符号处时域插 入 OFDM 训练符号,然后将信号整体传输至接收端 进行解调。TS1 和 TS2 利用 3 个 FBMC 训练符号 进行 FFO 的估计,而 TS3 和 TS4 仅用 2 个 FBMC 训练符号进行 FFO 估计。

表1 4种训练序列参数表

Table 1 Design parameters of four training sequences

Name	Structure
TS1	$0\ 0 \And 0 \And 0 \And 0 \otimes 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
TS2	$0\ 0 * 0 * 0 * 0 * 0 0 \Delta 0 0 0$
TS3	$0\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ 0\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ 0\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ 0\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \ensuremath{\overset{\scriptstyle\bullet}{\times}\ \\scriptstyle$
TS4	0 0 ※ 0 ※ 0 0 0 ∆ 0 0

图 3 是背靠背场景下不同训练序列对应的频偏 相对估计误差,该参数的定义是 $|\Delta f' - \Delta f|/\Delta f$, $\Delta f'$ 表示频偏测量值, Δf 表示频偏实际值。激光器 频偏设定为 40 MHz,对应的归一化频偏等于 1.0244 $\left(1.0244 = \frac{40 \times 10^6}{10 \times 10^9/256}\right)$,它既包含 FFO,也 包含 IFO。从图 3 可以看到:与其他 3 种训练序列 相比,TS1 的相对估计误差较小,估计精度高。而 TS2 的估计误差最大,这是由于 FBMC 训练符号与 OFDM 训练符号之间的保护间隔过小,引起符号间 干扰,导致 TS2 估计精度降低。TS1 的性能优于 TS4,由于 TS4 相对于 TS1 进行 FFO 估计时少用 了一个训练符号,FFO 估计精度降低,导致性能变 差。因此,在后面的研究中,将 TS1 选取为 CO-FBMC/OQAM 系统的训练序列。

OFDM 训练符号承载的频域数据可以选用随 机序列、CAZAC 序列或 PN 序列,它们都可用于 IFO 估算。下面研究这三种序列对 IFO 估计性能 的影响,激光器频偏设定为 156.25 MHz。图 4 是 OFDM 训练符号采用随机序列时,接收端误码率随 光信噪比(OSNR)的变化曲线。在计算图 4 时,发 射端发送训练序列和有效载荷数据,OFDM 训练符 号分别采用上述 3 种序列估算 IFO,而 FBMC 训练 符号估算 FFO 的过程不变;获得 3 种 IFO 估计值 后,利用他们对同一有效载荷数据的时域波形进行 频偏补偿,最后分别统计上述 3 种序列均准

图 3 背靠背情况下 4 种不同训练序列的相对估计误差 Fig. 3 Relative estimation errors of four sequences in back-to-back (BtB) scenario

确估计出了整数频偏,输出的估计值相同,因此从有 效载荷数据中统计出的 BER 性能一样。为了简洁 清晰,图 4 只显示了随机序列对应的 BER 性能。这 些结果说明:随机序列、CAZAC 序列和 PN 序列的 IFO 估计性能相似,均可以准确估计出 IFO。在后 面的研究中,将随机序列选取为 OFDM 训练符号承 载的频域数据,用于整数频偏的估计。

图 4 使用随机序列、CAZAC 序列和 PN 序列时接收端 BER 随光信噪比的变化曲线 Fig. 4 BER of receiver as a function of OSNR for

using random, CAZAC, and PN sequences

为了研究 FFO 的估计范围与补偿效果,将激 光器频偏的变化范围设定为-12~12 MHz,统计接 收端的 EVM。图 5 是光信噪比为 20 dB 时接收端 的 EVM 与激光器频偏的对应变化曲线,其中,星座 图的横、纵坐标分别代表 QAM 调制的复数符号实 部和虚部的量值。从图中可以看出:当频偏在-9~ 9 MHz 范围内变化时,EVM 的值位于 0.1~0.2 之 间,这说明此时 FFO 的估计与补偿取得了良好效 果。当频偏位于 9~10 MHz范围时,曲线急剧上 升,EVM 的值增大到0.7,这说明此时 FFO 的估计 与补偿效果较差。

(OSNR: 20 dB)

为了研究 IFO 的估计范围,将激光器频偏的变 化范围设定为-585~585 MHz,对应归一化频偏是 -15~15,接收端光信噪比仍设定为 20 dB。图 6 是 EVM 与归一化频偏的对应曲线。从图中可看 到:当归一化频偏在-12~12 范围内变化时,系统 的 EVM 值很小,说明在此范围内本文所提算法能 较好地估计和补偿频偏带来的影响;而当归一化频 偏绝对值超出 12 时,EVM 值急剧上升。因此,本 文所提算法的 IFO 准确估计范围可达 12 倍子载波 频率间隔。

(OSNR: 20 dB)

图 7 是背靠背场景下归一化频偏等于 4 和 6 时 BER 与 OSNR 的对应变化曲线,从图中可看出:当 OSNR 在 12~22 dB 范围内变化时,接收端误码率 随着光信噪比的增加而持续降低,当 OSNR 大于 13 dB时,归一化频偏为 4 的接收端误码率下降到前 向纠错(FEC)极限。在相同的 OSNR 下,归一化偏 移为 4 时的接收端误码率要低于归一化偏移为 6 的 接收端误码率。图 7 也显示了未进行频偏补偿时 CO-FBMC/OQAM 系统的 BER 性能,此时 BER 为 0.5,传输质量变得很差。通过对比频偏补偿前后系 统的 BER 性能,可以发现采用本文所提方法后, IFO 的影响得到了正确估计和补偿,系统的传输质 量得到明显提升。

- 图 7 (a)背靠背情况下接收端 BER 随光信噪比的变化曲 线;(b)~(d)归一化整数偏移为 4、光信噪比分别为 12 dB,15 dB,18 dB 时的解调星座图
- Fig. 7 (a) BER of receiver as a function of OSNR in BtB scenario; (b)-(d) demodulation constellation charts with normalized IFO of 4 and OSNR values of 12 dB, 15 dB, and 18 dB, respectively

图 8 是经过 800 km 光纤传输后,系统的 BER 与 OSNR 之间的对应变化曲线,归一化频偏分别等 于 4、6。未进行频偏补偿时系统的 BER 性能用虚 线显示在图 8 中。在计算该结果时,标准单模光纤 的功率损耗系数设定为 0.2 dB/km,每个光纤跨段 后利用掺铒光纤放大器(EDFA)对功率损耗进行一 次补偿;标准单模光纤的色散系数设定为 16 ps • nm⁻¹ • km⁻¹,未对每个光纤跨段中的色散 进行进一步补偿。与图 7 相似,BER 随着 OSNR 的 增大而减小。对于 IFO 等于 4 的系统,背靠背场景 下,OSNR 大于 12 dB 时误码率才能小于 FEC 极 限;而经过 800 km 传输后,OSNR 需要达到 15 dB 以后误码率才能小于 FEC 极限。这是由于经过光 纤链路的传输之后,累积的残余色散和功率损耗导 致补偿效果变差。

Schmidl 等^[26]提出了一种时频同步方法,该方 法在各种 OFDM 系统中得到了广泛应用。CO-FBMC/OQAM 系统也可以使用该方法,此时需要 在发射端插入一段具有时域对称性的训练序列。但 是,对于 FBMC/OQAM 系统,这种方法插入的训练 序列只能用于进行时间和频率同步,无法估计信道

图 8 800 km 传输后接收端 BER 随光信噪比的变化曲线 Fig. 8 BER of receiver as a function of OSNR after 800-km transmission

响应和均衡,从而会影响频谱效率的提升。图9对 比了背靠背场景下本文所提方法和 Schmidl 方法的 相对估计误差,接收端光信噪比设定为20dB。从 图中可以看出:两种方法均具有良好的频偏估计性 能,由于本文所提方法采用了子载波间平均等噪声 抑制手段,因此估计精度略高于 Schmidl 方法。

图 9 本文所提方法和 Schmidl 方法的相对估计误差 Fig. 9 Relative estimation error for proposed method and Schmidl's method

4 结 论

研究了 CO-FBMC/OQAM 系统的一种整数频 偏估计与补偿算法。该算法使用一种混合型的训练 序列,既能完成 FFO 的估计,也能实现 IFO 的估 计,适用于对较大激光器频偏进行有效补偿。频偏 补偿结束后,使用相同训练序列进行信道响应估计 和均衡。在背靠背和 800 km 光纤传输两种情况 下,研究了采样速率为 10 GSa/s 的 CO-FBMC/ OQAM 系统的传输性能,对所提算法的有效性进行 了分析。仿真结果表明,该算法的 IFO 准确估计范 围可达到 12 倍子载波频率间隔。研究结果可为 CO-FBMC/OQAM 系统的发展提供有益参考。

参考文献

Gao L N, Liu J F, Zeng X Y, et al. Joint phase equalization in optical orthogonal frequency division multiplexing system [J]. Acta Optica Sinica, 2012, 32(1): 0106004.

高丽娜,刘剑飞,曾祥烨,等.一种光正交频分复用 系统的联合相位均衡方法[J].光学学报,2012,32 (1):0106004.

 Zhou H, Dong Z, Cao Z Z, et al. All-optical wavelength conversion for orthogonal frequency division multiplexing optical signal [J]. Acta Optica Sinica, 2010, 30(4): 959-964.
 周慧, 董泽, 曹子峥,等. 正交频分复用信号的全光

减点,量件,目了时,守.正义频力发用信号的主光 波长变换性能研究[J].光学学报,2010,30(4): 959-964.

- [3] Hao Y H, Wang R, Li Y Q, et al. Investigation of polarization effect in coherent optical orthogonal frequency division multiplexing system [J]. Acta Optica Sinica, 2013, 33(7): 0706021.
 郝耀鸿, 王荣, 李玉权, 等.相干光正交频分复用系统偏振效应研究[J].光学学报, 2013, 33(7): 0706021.
- [4] Wang X, Chen L, Cao Z Z. Influence of modulation depth on optical subcarrier OFDM system [J]. Acta Optica Sinica, 2011, 31(5): 0506002.
 王鑫,陈林,曹子峥.调制深度对副载波正交频分复用光传输系统性能的影响[J].光学学报, 2011, 31 (5): 0506002.
- [5] Wu X Q, Liu J F, Zeng X Y, et al. Timing synchronization algorithm for coherent optical orthogonal frequency division multiplexing system based on pseudo noise sequence [J]. Acta Optica Sinica, 2019, 39(5): 0506001.
 吴雪琪,刘剑飞,曾祥烨,等.基于伪随机噪声序列 相干光正交频分复用系统的定时同步算法[J].光学 学报, 2019, 39(5): 0506001.
- [6] Zhang Q Q, Zhang P, Lu J, et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems[J]. Acta Optica Sinica, 2018, 38(9): 0906006.
 章青青,张平,卢瑾,等.相干光正交频分复用系统 中射频导频和扩展卡尔曼滤波联合的相位噪声补偿 算法[J].光学学报, 2018, 38(9): 0906006.
- [7] Wu B, Chen X H, Liu X P, et al. Analysis of ICI and ISI in troposcatter communication based on OFDM/OQAM modulation [J]. Fire Control &. Command Control, 2015, 40(9): 35-39, 44.
 吴奔,陈西宏,刘晓鹏,等.散射通信中 OFDM/OQAM 的 ICI 和 ISI 分析[J].火力与指挥控制, 2015, 40(9): 35-39, 44.

- [8] Hassan A Y. A novel structure of high speed OFDM receiver to overcome ISI and ICI in Rayleigh fading channel [J]. Wireless Personal Communications, 2017, 97(3): 4305-4325.
- [9] Qin W, Peng Q C. Improved ICI self-cancellation scheme for OFDM system based on symbol transform
 [J]. Journal of University of Electronic Science and Technology of China, 2008, 37(5): 641-644.
 秦文,彭启琮. OFDM 系统中基于符号变换的 ICI 自 消除改进方法[J]. 电子科技大学学报, 2008, 37 (5): 641-644.
- [10] Lu Z L, Wang J H, Sun Y Z, et al. Inter-carrier interference suppression algorithm for OFDM-PON systems based on pseudo-symmetrical training sequences[J]. Acta Optica Sinica, 2013, 33(10): 1006002.
 路振龙, 王军华, 孙彦赞, 等. 基于伪对称序列的 OFDM-PON 系统载波间干扰抑制算法[J]. 光学学 报, 2013, 33(10): 1006002.
- [11] Farhang-Boroujeny B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92-112.
- [12] Lin H, Gharba M, Siohan P. Impact of time and carrier frequency offsets on the FBMC/OQAM modulation scheme [J]. Signal Processing, 2014, 102: 151-162.
- [13] Nissel R, Schwarz S, Rupp M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768-1782.
- [14] Liu Z S, Wu Q D, Cheng J Z, et al. Comparison of transmission performance of between OFDM and FBMC in PON link [J]. Communications Technology, 2018, 51(11): 2554-2557.
 刘战胜,吴庆典,程吉喆,等. PON 链路中 OFDM 和 FBMC 的传输性能比较[J]. 通信技术, 2018, 51 (11): 2554-2557.
- [15] Li N, Zhou W. Comparison of new multicarrier transmission techniques for 5G[J]. Communications Technology, 2016, 49(5): 519-523.
 李宁,周围.面向 5G 的新型多载波传输技术比较 [J].通信技术, 2016, 49(5): 519-523.
- [16] Fusco T, Tanda M. Blind frequency-offset estimation for OFDM/OQAM systems[J]. IEEE Transactions

on Signal Processing, 2007, 55(5): 1828-1838.

- [17] Fusco T, Petrella A, Tanda M. Non-data-aided carrier-frequency offset estimation for pulse-shaping OFDM/OQAM systems [J]. Signal Processing, 2008, 88(8): 1958-1970.
- [18] Mattera D, Tanda M. Blind symbol timing and CFO estimation for OFDM/OQAM systems [J]. IEEE Transactions on Wireless Communications, 2013, 12 (1): 268-277.
- [19] Mattera D, Tanda M. Data-aided synchronization for OFDM/OQAM systems [J]. Signal Processing, 2012, 92(9): 2284-2292.
- [20] Cho H, Ma X L. Generalized synchronization algorithms for FBMC-OQAM systems [J]. IEEE Transactions on Vehicular Technology, 2018, 67 (10): 9764-9774.
- [21] You B Y, Yang L, Luo F G, et al. Joint carrier frequency offset and phase noise estimation based on pseudo-pilot in CO-FBMC/OQAM system[J]. IEEE Photonics Journal, 2019, 11(1): 7201611.
- [22] Huang Y S, Zhang X G, Xi L X. Modified synchronization scheme for coherent optical OFDM systems[J]. Journal of Optical Communications and Networking, 2013, 5(6): 584-592.
- [23] Wu J D, Tang M, Xu L, et al. A robust and efficient frequency offset correction algorithm with experimental verification for coherent optical OFDM system[J]. Journal of Lightwave Technology, 2015, 33(18): 3801-3807.
- [24] Wang D B, Yuan L H, Lei J L, et al. Joint channel/ frequency offset estimation and correction for coherent optical FBMC/OQAM system [J]. Optical Fiber Technology, 2017, 39: 87-94.
- [25] Bellanger M G. Specification and design of a prototype filter for filter bank based multicarrier transmission [C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), May 7-11, 2001, Salt Lake City, UT, USA. New York: IEEE, 2001: 2417-2420.
- [26] Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, 1997, 45(12): 1613-1621.